Sierpiński graphs as spanning subgraphs of Hanoi graphs

نویسندگان

  • Andreas M. Hinz
  • Sara Sabrina Zemljič
چکیده

Hanoi graphs Hn p model the Tower of Hanoi game with p pegs and n discs. Sierpiński graphs Sn p arose in investigations of universal topological spaces and have meanwhile been studied extensively. It is proved that Sn p embeds as a spanning subgraph into Hn p if and only if p is odd or, trivially, if n = 1. MSC: 05C60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Distances in Sierpiński Graphs: Almost-extreme Vertices and Metric Dimension

Sierpiński graphs S p form an extensively studied family of graphs of fractal nature applicable in topology, mathematics of the Tower of Hanoi, computer science, and elsewhere. An almost-extreme vertex of S p is introduced as a vertex that is either adjacent to an extreme vertex of S p or is incident to an edge between two subgraphs of S p isomorphic to S n−1 p . Explicit formulas are given for...

متن کامل

Coloring Sierpiński graphs and Sierpiński gasket graphs

Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpiński gasket graphs Sn are the graphs naturally defined by the finite number of iterations that lead to the Sierpiński gasket. An explicit labeling of the vertices of Sn is introduced. It is proved that Sn is uniquely 3-colorable, that S(n, 3) is uniquely 3-edgecolorable, and that χ′(Sn) = 4, thus answering ...

متن کامل

Generalized Sierpiński graphs

Sierpiński graphs, S(n, k), were defined originally in 1997 by Klavžar and Milutinović. The graph S(1, k) is simply the complete graph Kk and S(n, 3) are the graphs of Tower of Hanoi problem. We generalize the notion of Sierpiński graphs, replacing the complete graph appearing in the case S(1, k) with any graph. The newly introduced notion of generalized Sierpiński graphs can be seen as a crite...

متن کامل

Codes and L(2, 1)-labelings in Sierpiński Graphs

The λ-number of a graph G is the minimum value λ such that G admits a labeling with labels from {0, 1, . . . , λ} where vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. Sierpiński graphs S(n, k) generalize the Tower of Hanoi graphs—the graph S(n, 3) is isomorphic to the graph of the Tower of Hanoi with n disks. It is proved that for any...

متن کامل

A survey of the studies on Gallai and anti-Gallai graphs

The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are adjacent if two of the end vertices of the corresponding edges in G coincide and the other two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement of its Gallai graph in L(G). Attributed to Gallai (1967), the study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011